Pierre de Fermat (piyer dö ferma okunur) (d. 1601, Beaumont-de-Lomagne - ö. 12 Ocak 1665, Castres), Bask kökenli Fransız hukukçu ve matematikçi. İlk öğrenimini doğduğu şehirde yapmıştır. Yargıç olmak için çalışmalarına Toulouse'de devam etmiştir. Fermat, memurluğunun yoğun işlerinden geriye kalan zamanlarında matematikle uğraşmıştır. Arşimet'in eğildiği diferansiyel hesaba geometrik görünümle yaklaşmıştır. Sayılar teorisinde önemli sonuçlar bulmuş, olasılık ve analitik geometriye de katkılarda bulunmuştur.
Günümüzde hatırlanmasının en önemli sebebi Fermat'nın Son Teoremi'dir. Modern sayılar kuramının kurucusu olarak kabul edilen 17. yüzyıl matematikçisi Pierre de Fermat'nın adını taşıyan bu teorem, şu şekilde ifade edilebilir:
Herhangi x, y, ve z pozitif tam sayıları için,
ifadesini sağlayan ve 2'den büyük bir doğal sayı n yoktur. Fermat, bu problemi çözmüş, kanıtı da Eski Yunanlı matematikçi Diaphontos'un Arithmetika adlı kitabının kendindeki kopyasının sayfalarından birinin kenarına 1637'de şöyle yazmıştı:
x, y, z ve n pozitif tamsayılar ve n>2 olmak koşuluyla, x^n + y^n = z^n denkleminin çözümü yoktur. Ben bunun kanıtını buldum, ama kanıtı bu kenar boşluğuna sığdırmak olanaksız.
Ancak bu kanıt bulunamamıştır. Fermat'tan sonra matematikçiler bu önermenin bir türlü içinden çıkamamışlardır. Fermat'ın bıraktığı defterler arasında teoremin kanıtına rastlayamadıkları gibi, kendileri de ne doğruluğunu ne yanlışlığını kanıtlayabilmişlerdir. Yıllar boyunca (300 yıl sonrasına kadar) bu konuda yapılan çalışmalar sonucu bu teoremin Shimura-Taniyama Konjektürü'nün bir özel durumu olduğu anlaşılmış, ardından da 1993'te İngiliz matematikçi Andrew Wiles, eski öğrencilerinden Richard Taylor'ın da yardımıyla ve cebirsel geometrinin çok karmaşık araçlarını kullanarak teoremi kanıtlamanın bir yolunu bulmuş ve bu kanıtı 1995'te Annals of Mathematics adlı dergide yayımlamıştır. Shimura-Taniyama Konjektürü'nün böylelikle ispatlanması sonucu Fermat'nın Son Teoremi de 1995'te ispatlanmış oldu.
Asal sayılar üzerinde çok durmuştur. Onun bu konuda çeşitli teoremleri vardır. Örneğin, 4n + 1 şeklinde yazılan bir asal sayı p, yalnızca bir tek şekilde iki karenin toplamı olarak yazılabilir.
Mesela en ufak asal sayılar p: 5 = 12 + 22 ve 13 = 22 + 32 dir. Bu teoremi daha sonra Euler kanıtlamıştır.
BİR BAŞKA KAYNAKTA Pierre De FERMAT
1601 yılında Fransa'da doğdu. 1920'lerin ikinci yarısında, Bordeaux'ya gitmeden önce Toulouse Üniversitesi'nde eğitim görmüştür. Bordeaux 'da ilk ciddi matematiksel araştırmalarına başlamış ve 1629 'da orada bulunan bir matematikçiye Apollonius'un Plane loci adlı eserinin, kendi-sinin düzenlemiş olduğu bir kopyasını sunmuştur. Bordeaux'da Beaugrand ile tanışmış ve bu sırada matematiğe olan ilgisini Fermat ile paylaşan Etienne d'Espagnet'e sunmuş olduğu "maximum ve minimum" üzerindeki önemli çalışmalarını üretmiştir. Toulouse'ya gittikten sonra da Beaugrand ile matematik arkadaşlığını sürdürmüştür ancak burada yeni bir matematik arkadaşı daha kazanmıştır,o da Carcavi'dir. Carcavi de
Fermat gibi bir meclis üyesidir, ancak onları yakınlaştıran ve aralarında paylaştıkları şey ma
tematik olmuştur. Fermat Cercavi 'ye matematik üzerine olan buluşlarını anlatmıştır. Fermat, önemli matematikçiler arasında olma ününü çabuk yakalamıştı, ancak çalışmalarını yayınlama girişimi çoğu zaman başarısızlıkla sonuçlandı, çünkü Fermat hiç bir zaman çalışmalarının kusursuz bir forma sokulup tamamen bitirilmiş bir hale gelmesini istememişti. Yine de bazı metotları yayınlanmıştı, örneğin; Hérigone, en önemli çalışmalarından biri olan Cursus Mathematicus adlı eserine Fermat'ın maximum ve minimum metotlarını eklemişti. Fermat ve diğer matematikçiler arasında giderek gelişen bu mektuplaşmalar maalesef evrensel bir övgü bulamamıştır. Frenicle de Bessy, çözülmesini imkansız bulduğu Fermat'ın problemlerine karşı büyük bir kızgınlık duymuş ve bunun üzerine Fermat'a sert bir mektup yazmıştır. Fermat'ın bu mektuba de-taylı bir açıklama vermesine karşılık yine de Frenicle de Bessy, Fermat'ın kendisini aldattığını düşünmüştür. 1643 - 1654 yılları arasındaki dönem Fermat'ın Paris'teki meslektaşlarıyla ilişkilerinin zayıfladığı dönemlerdendi. Tabi bunun bazı sebepleri vardı. Birincisi, Fermat'ın işlerinin yoğunluğunun onun matematiğe fazla zaman ayırmasını engellemesiydi. İkincisi ise 1648 yılından itibaren Toulouse'u ciddi bir biçimde etkileyen Fransa'daki sivil savaştı ve sonuncusu ise Toulouse'daki hayatta ve tabii ki Fermat'ın hayatında ölümcül izler bırakan 1651 vebası. Buna rağmen yine de Fermat bu dönemde sayılar teorisi üzerinde çalışmıştı. Fermat çoğunlukla sayılar teorisi üzerindeki çalışmalarıyla, özellikle Fermat'ın son teoremi (Fermat 's Last Theorem) ile bilinir. Bu teorem şu şekildedir; n>2 için xn + yn = zn eşitliğini sağlayan sıfırdan farklı x, y ve z tamsayıları yoktur.
Fermat, sonsuz iniş 'in metotlarını açıkladı ve bunu 4k+1 formundaki asal sayıların iki kare toplamı olarak yazılabileceğini kanıtlamada kullandı. Farz edelim ki 4k+1 formundaki bir asal sayı iki kare toplamı olarak yazılamasın, öyleyse 4k+1 formunda iki kare toplamı olarak yazılamayan daha küçük bir sayı vardır. Fermat 'ın bu mektupta açıklayamadığı ise küçük sayının daha büyük olan sayıdan nasıl üretileceğidir. Bir varsayım Fermat'ın bu adımı nasıl gerçekleştireceğini bilmediğini söylemektedir, ancak şu bir gerçektir ki Fermat'ın metodunu açıklamada düşmüş olduğu bu çıkmaz, matematikçilerin ilgisini konu üzerinde yitirmesine neden olmuştur. Ve bu Euler'in bu konudaki problemleri tekrar ele alıp bu boşlukları doldurmasına dek sürmüştür.